Long noncoding RNA lnc-DILC stabilizes PTEN and suppresses clear cell renal cell carcinoma progression

Zhang H, Wei P, Lv W, et al.
Cell & Bioscience, Vol 9, Article number: 81. October 2019
DOI: https://doi.org/10.1186/s13578-019-0345-4

Abstract

Background

Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are crucial regulators affecting the progression of human cancers. Recently, lncRNA downregulated in liver cancer stem cells (lnc-DILC) was identified to function as a tumor suppressor inhibiting the tumorigenesis and metastasis in liver cancer and colorectal cancer. However, to date, little is known about the functional roles of lnc-DILC in modulating malignant phenotypes of clear cell renal cell carcinoma (ccRCC) cells.

Methods

lnc-DILC expression in human ccRCC tissues was detected by qRT-PCR. Overexpression and knockdown experiments were carried out to determine the effects of lnc-DILC on ccRCC cell proliferation, migration and invasion. To reveal the underlying mechanisms of lnc-DILC functions in ccRCC cells. RNA immunoprecipitation, RNA pull-down, in vivo ubiquitination, co-immunoprecipitation and western blot assays were performed.

Results

Here, we identified that lnc-DILC levels were dramatically downregulated in ccRCC tissues. Loss of lnc-DILC expression was correlated with larger tumor size, advanced tumor grade and lymph node metastasis, and also predicted worse prognosis in patients with ccRCC. Functionally, knockdown and overexpression experiments demonstrated that lnc-DILC inhibited cell proliferation, migration and invasion in ccRCC cells. Mechanistic investigation revealed that lnc-DILC bound to tumor suppressor PTEN and suppressed its degradation. lnc-DILC repressed the PTEN ubiquitination through blocking the interaction between PTEN and E3 ubiquitin ligase WWP2 and recruiting the deubiquitinase USP11 to PTEN. Moreover, we demonstrated that PTEN–AKT signaling was crucial for lnc-DILC-mediated suppressive effects.

Conclusions

In summary, our research revealed a novel mechanism by which lnc-DILC regulates PTEN stability via WWP2 and USP11, and shed light on potential therapeutic strategies by the restoration of lnc-DILC expression in patients with ccRCC.

Read article
No Comments

Sorry, the comment form is closed at this time.

You don't have permission to register